Newsflash
Ars Medici

Imagistica hepatocarcinomului

de Prof. dr. Laura ILIESCU - feb. 24 2023
Imagistica hepatocarcinomului

Neoplaziile primare hepatice continuă să fie o problemă de sănătate publică la nivel global, în ciuda evoluţiei programelor de prevenţie și de tratament al hepatopatiilor. Se estimează că în anul 2025 incidenţa hepatocarcinomului va ajunge la 1 milion de persoane afectate anual.

pt ars medici
Formațiune intrahepatică la IRM abdominal

 

Cauzele directe ale apariţiei hepatocarcinomului (HCC) sunt reprezentate de ciroza hepatică, infecţia cronică cu virusul hepatitic B (VHB), steatohepatita alcoolică și non-alcoolică. Astfel, rata carcinogenezei la pacienţii cu ciroză hepatică clasa Child A sau B sau cu ciroză alcoolică este estimată la aproximativ 2,5% pe an. Pe lângă acești factori etiologici direcţi, au fost identificaţi cofactori patogenici cu rol în apariţia cancerului hepatic (acidul aristolochic, aflatoxina B1, fumatul) sau cu rol protector (cafeaua, aspirina).

 Ecografia convenţională

        Imagistica în diagnosticul HCC are la bază dinamica substanţei de contrast injectate, fie că este vorba despre ecografia cu contrast (CEUS), tomografia computerizată (CT) sau rezonanţa magnetică nucleară (IRM).

        De cele mai multe ori, prima investigaţie de detecţie a HCC o reprezintă ecografia abdominală convenţională, la care se evidenţiază formaţiuni intrahepatice cu diametrul de câţiva milimetri. Aspectul ecografic tipic al HCC se vizualizează folosind modul B al ecografiei: formaţiuni rotund-ovalare, cu contur regulat, cu halou hipoecogen și patternuri diverse la interior, în funcţie de dimensiunile tumorii (odată cu creșterea în dimensiuni, crește încărcarea cu grăsimi a formaţiunii tumorale, ceea ce o face să devină hiperecogenă sau cu un aspect mozaicat). Evaluarea prin Doppler nu decelează semnal la nivel tumoral în cazul leziunilor de mici dimensiuni; poate fi observat semnal punctiform la nivelul pereţilor și intratumoral sau se poate evidenţia o reţea vasculară la nivelul tumorii.

CEUS

        Recent, evaluarea ecografică folosind substanţă de contrast capătă din ce în ce mai multă amploare în diagnosticul HCC, prezentând avantaje tehnice incontestabile: disponibilitatea crescută faţă de examenele imagistice de performanţă (CT, IRM), lipsa reacţiilor adverse la substanţa de contrast. Permite diferenţierea facilă faţă de nodulii displazici sau nodulii de regenerare ce pot fi întâlniţi la pacienţii cirotici, aceștia prezentând pattern de captare și eliminare a substanţei de contrast similar parenchimului hepatic adiacent.

        Nodulii de hepatocarcinom prezintă încărcare în faza arterială și spălare în faza venoasă și parenchimatoasă a investigaţiei.

        Aspectul hipervascular al tumorii apare mai evident la CEUS folosind bulele de gaz decât în urma folosirii substanţei de contrast iodate sau pe baza de gadolinium la CT sau, respectiv, la IRM.

CT sau IRM

        Conform ghidului Asociaţiei Americane pentru Studiul Bolilor Hepatice (AASLD), diagnosticul pozitiv în hepatocarcinom poate fi stabilit doar pe baza imagisticii CT sau IRM, fără a fi necesară dovada histopatologică.

        Aspectul tipic al HCC se definește ca hipercaptare în faza arterială (fără halou perilezional), cu spălare în faza portală și parenchimatoasă, cu aspect capsulat pentru leziunile cu diametrul de peste 1 cm. Alegerea metodei imagistice (CT sau IRM) și a substanţei de contrast (extracelulară sau cu excreţie hepatobiliară) influenţează sensibilitatea diagnosticului.

        Se preferă examinarea CT pentru pacienţii cu ascită în cantitate mare sau care nu pot tolera apneea prelungită (situaţii care pot da artefacte pe imagistica IRM). Evaluarea prin IRM este preferată pentru pacienţii cu boală renală cronică, alergie la iod sau sarcină în evoluţie. De asemenea, la pacienţii cu insuficienţă hepatică și un nivel seric al bilirubinei de peste 2 mg/dl, se preferă folosirea substanţei de contrast extracelulare în detrimentul celor cu excreţie hepatobiliară, deoarece captarea acestora din urmă de parenchimul hepatic este redusă în aceste condiţii.

        Dacă imagistica este neconcludentă și nu există date suplimentare care să justifice diagnosticul HCC (spre exemplu, pacienţi fără ciroză hepatică), se indică efectuarea biopsiei hepatice.

        Evaluarea leziunilor nodulare hepatice utilizează scorul de risc LI-RADS, care stabilește algoritmul de monitorizare în funcţie de aspectul imagistic (Tabel).

Tabel hepatocarcinom

        Pentru leziunile de mici dimensiuni (1-2 cm), aspectul IRM s-a dovedit a avea o sensibilitate mai mare pentru HCC decât aspectul CT. Un studiu a comparat performanţa CT cu substanţă de contrast, IRM cu substanţă de contrast extracelulară (EC-MRI) și IRM folosind acid gadoxetic (EOB-MRI) pentru detecţia HCC la pacienţi cu ciroză hepatică, folosind ca grup de control ficat explantat. Concluzia studiului a fost că EOB-MRI are o sensibilitate mai mare pentru detecţia HCC comparativ cu CT, iar sensibilitatea EC-MRI este comparabilă cu cea a EOB-MRI.

        Au fost descrise și protocoale mai scurte pentru investigaţie de tip IRM, ţintite pentru detecţia HCC, fără substanţă de contrast, folosind agenţi de contrast nespecifici sau folosind contrast cu excreţie hepatobiliară. Deși nu există studii prospective de validare pentru aceste metode, se consideră că elaborarea unor protocoale standard de examinare și lipsa variabilităţii inter-examinator (ce apare spre exemplu în cazul ecografiei abdominale de screening) reprezintă un argument pentru implementarea lor în screeningul pacienţilor pentru HCC.

        Aspecte IRM tipice pentru HCC includ restricţia în faza de difuzie, hipointensitatea în timpul hepatobiliar. Dacă sunt prezente aceste două semne la nivelul unei leziuni hepatice hipervasculare fără spălare sau unei leziuni izo- sau hipovasculare pe un ficat cirotic, există o probabilitate înaltă de HCC.

        Alte criterii pentru HCC sunt reprezentate de hipercaptarea „în cocardă”, conţinutul grăsos, arhitectura mozaicată și hiperintensitatea în semnal T2. Un studiu recent a demonstrat și că un nodul hipointens în faza hepatobiliară, fără hipercaptare arterială la examinarea cu acid gadoxetic, este sugestiv pentru HCC la pacienţii cu hepatopatii cronice.

        Examinarea IRM cu imagistică incoerentă a mișcării (IVIT) a fost folosită pentru a studia efectele difuziei și perfuziei nodulilor hepatici în absenţa substanţei de contrast. Investigaţia este foarte utilă la pacienţii cu afectare renală, alergie la substanţele de contrast sau pentru a evita efectele pe termen lung ale depunerii de gadolinium la nivel tisular. Un articol recent a demonstrat eficienţa acestei metode în diagnosticul diferenţial între hepatocarcinom și colangiocarcinom. De asemenea, tehnica a fost studiată și pentru evaluarea răspunsului terapeutic.

        Examinarea prin PET-CT folosind 18F-fluorodeoxiglucoză poate fi utilă pentru stabilirea prognosticului pacienţilor cu HCC agresiv sau slab diferenţiat. De asemenea, investigaţia prezintă o specificitate de 92% pentru diferenţierea trombozei tumorale de tromboza venoasă cronică. Captarea glucozei marcate de către trombul tumoral este considerată factor de prog­nostic negativ pentru supravieţuire.

        Radiomica, noua ramură a radiologiei, utilizează algoritmi de analiză a imaginilor obţinute pentru stabilirea diagnosticului și prognosticului în diverse patologii. Aplicaţiile sale în hepatologie au fost demonstrate până acum în privinţa diagnosticului diferenţial al formaţiunilor intrahepatice. De asemenea, analiza computaţională a imaginilor CT poate identifica prezenţa trombozei tumorale portale și chiar poate emite predicţii referitoare la invazia microvasculară.

Material preluat din volumul „Gastroenterologie 2022”, editat de „Viaţa Medicală”


Notă autor:

Bibliografie
1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–1314;
2. Akinyemiju T, Abera S, Ahmed M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level. Results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3:1683–1691
3. Valery PC, Laversanne M, Clark PJ, Petrick JL, McGlynn KA, Bray F. Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology. 2018;67:600–611
4 de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:180–190
5. Philips CA, Rajesh S, Nair DC, Ahamed R, Abduljaleel JK, Augustine P. Hepatocellular Carcinoma in 2021: An Exhaustive Update. Cureus. 2021;13(11):e19274. Published 2021 Nov 5. doi:10.7759/cureus.19274
6. Yang B, Petrick JL, Kelly SP, Graubard BI, Freedman ND, McGlynn KA. Adiposity across the adult life course and incidence of primary liver cancer: the NIH-AARP cohort. Int J Cancer. 2017;141:271–278
7. Hagström H, Tynelius P, Rasmussen F. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma: a national, population-based cohort study in 1.2 million men. Gut. 2018;67:1536–1542
8. Bravi F, Tavani A, Bosetti C, Boffetta P, La Vecchia C. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. Eur J Cancer Prev. 2017;26:368–377
9. Tseng CH. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int. 2018;38:2018–2027;
10. Simon TG, Ma Y, Ludvigsson JF, et al. Association between aspirin use and risk of hepatocellular carcinoma. JAMA Oncol. 2018;4:1683–1690
11. Tran KT, McMenamin ÚC, Coleman HG, et al. Statin use and risk of liver cancer: evidence from two population-based studies. Int J Cancer. 2020;146:1250–1260.
12. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J Hepatol. 2017;68:25–32
13. Papatheodoridis GV, Idilman R, Dalekos GN, et al. The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B. Hepatology 2017;66:1444-1453
14. Udompap P, Kim WR. Development of Hepatocellular Carcinoma in Patients With Suppressed Viral Replication: Changes in Risk Over Time. Clin Liver Dis (Hoboken). 2020 Mar 26;15(2):85-90.
15. Armengol C, Sarrias MR, Sala M. Hepatocellular carcinoma: present and future. Med Clin (Barc) 2018;150:390–397
16. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017;34:153–159
17. Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020 Feb;72(2):250-261.
18. Kansagara D, Papak J, Pasha AS, et al. Screening for hepatocellular carcinoma in chronic liver disease: a systematic review. Annals of internal medicine. 2014;161(4):261–269
19. Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. Journal of cancer research and clinical oncology. 2004;130(7):417–422
20. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS medicine. 2014;11(4):e1001624;
21. Van Meer S, de Man RA, Coenraad MJ, et al. Surveillance for hepatocellular carcinoma is associated with increased survival: results from a large cohort in the Netherlands. J Hepatol 2015;63:1156–1163.;
22. Wu CY, Hsu YC, Ho HJ, et al. Association between ultrasonography screening and mortality in patients with hepatocellular carcinoma: a nationwide cohort study. Gut 2016;65:693–701
23. Barbara L, Benzi G, Gaiani S, et al. Natural history of small untreated hepatocellular carcinoma in cirrhosis: A multivariate analysis of prognostic factors of tumor growth rate and patient survival Hepatology 1992; 16(!): 132–7
24. Kudo M, Izumi N, Kokudo N, et al. Management of Hepatocellular Carcinoma in Japan: Consensus-Based Clinical Practice Guidelines Proposed by the Japan Society of Hepatology (JSH) 2010 Updated Version. Dig Dis 2011;29:339e64
25. Tzartzeva K, Obi J, Rich NE, et al. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology. 2018;154(6):1706–1718.e1701
26. Simmons O, Fetzer DT, Yokoo T, et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Alimentary pharmacology & therapeutics. 2017;45(1):169–177
27. Tayob N, Lok AS, Do KA, Feng Z. Improved Detection of Hepatocellular Carcinoma by Using a Longitudinal Alpha-Fetoprotein Screening Algorithm. Clinical gastroenterology and hepatology 2016;14(3):469–475.e462
28. Gopal P, Yopp AC, Waljee AK, et al. Factors that affect accuracy of alpha-fetoprotein test in detection of hepatocellular carcinoma in patients with cirrhosis. Clinical gastroenterology and hepatology 2014;12(5):870–877
29. Berhane S, Toyoda H, Tada T, Kumada T, Kagebayashi C, et al. Role of the GALAD and BALAD-2 Serologic Models in Diagnosis of Hepatocellular Carcinoma and Prediction of Survival in Patients. Clinical Gastroenterology and Hepatology 2016;14:875–886.e6;
30. Wang M, Sanda M, Comunale MA, Harrera H, Swindell C, et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. Cancer Epi Biomarkers Prevention 2017; 26(5): 795–803
31. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology (Baltimore, Md). 2018;67(1):358–380; EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. Journal of hepatology. 2018;69(1):182–236
32. Maturen K, Nghiem H, Marrero JA, et al. Lack of Tumor Seeding of Hepatocellular Carcinoma after Percutaneous Needle Biopsy Using Coaxial Cutting Needle Technique. AJR Am J Roentgenol 2006;187:1184–1187
33. Farvardin S, Patel J, Khambaty M, Yerokun O, Mok H, Tiro JA, Yopp AC, Parikh ND, Marrero JA, Singal AG. Patient-Reported Barriers are Associated with Lower HCC Surveillance Rates in Patients with Cirrhosis. Hepatology 2017; 65(3): 875–84
34. Nault JC, Cheng AL, Sangro B, Llovet JM. Milestones in the pathogenesis and management of primary liver cancer. J Hepatol. 2020;72:209–214
35. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–761
36. Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–511
37. Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma.J Hepatol. 2020;72:215–229
38. Stickel F, Buch S, Nischalke HD, et al. Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis. Am J Gastroenterol. 2018;113:1475–1483.
39. Bayard Q, Meunier L, Peneau C, et al. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat Commun. 2018;9:5235
40. Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52:594–604
41. Schwabe RF, Greten TF. Gut microbiome in HCC - mechanisms, diagnosis and therapy. J Hepatol. 2020;72:230–238
42. Grąt M, Wronka KM, Krasnodębski M, et al. Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant Proc. 2016;48:1687–1691
43. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68:1014–1023
44. Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69:107–120
45. Liu Q, Li F, Zhuang Y, et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog. 2019;11:1
46. Choi J, Kim GA, Han S, Lee W, Chun S, Lim YS. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma. Hepatology. 2019;69:1983–1994
47. Chen S, Li J, Tan X, et al. Clinical role of combining alpha-fetoprotein and lens culinaris agglutinin-reactive fraction of alpha-fetoprotein for hepatocellular carcinoma: evidence from literature and an original study. J Clin Lab Anal. 2020;34:0
48. Wan HG, Xu H, Gu YM, Wang H, Xu W, Zu MH. Comparison osteopontin vs AFP for the diagnosis of HCC: a meta-analysis. Clin Res Hepatol Gastroenterol. 2014;38:706–714
49. Vongsuvanh R, van der Poorten D, Iseli T, Strasser SI, McCaughan GW, George J. Midkine increases diagnostic yield in AFP negative and NASH-related hepatocellular carcinoma. PLoS One. 2016;11:0.
50. Jang ES, Jeong SH, Kim JW, Choi YS, Leissner P, Brechot C. Diagnostic performance of alpha-fetoprotein, protein induced by vitamin K absence, osteopontin, Dickkopf-1 and its combinations for hepatocellular carcinoma. PLoS One. 2016;11:0
51. Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018 Mar;38(2):741-767
52. Wang K, Guo W, Li N, Shi J, Zhang C, Lau WY, Wu M, Cheng S. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma following hepatectomy: a large-scale, long-term study. Br J Cancer. 2014 Apr 2;110(7):1811-9.
53. Yang J, Li J, Dai W, Wang F, Shen M, Chen K, Cheng P, Zhang Y, Wang C, Zhu R, Zhang H, Zheng Y, Wang J, Xia Y, Lu J, Zhou Y, Guo C. Golgi protein 73 as a biomarker for hepatocellular carcinoma: A diagnostic meta-analysis. Exp Ther Med. 2015 Apr;9(4):1413-1420..
54. Montagnana M, Danese E, Lippi G. Squamous cell carcinoma antigen in hepatocellular carcinoma: Ready for the prime time? Clin Chim Acta. 2015 May 20;445:161-6
55. Wang M, Shen J, Herrera H, Singal A, Swindell C, Renquan L, Mehta A. Biomarker analysis of fucosylated kininogen through depletion of lectin reactive heterophilic antibodies in hepatocellular carcinoma. J Immunol Methods. 2018 Nov;462:59-64;
56. Zhang S, Jiang K, Zhang Q, Guo K, Liu Y. Serum fucosylated paraoxonase 1 as a potential glycobiomarker for clinical diagnosis of early hepatocellular carcinoma using ELISA Index. Glycoconj J. 2015 May;32(3-4):119-25
57. Fu Y, Xu X, Huang D, et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: an official, large-scale, and multicenter clinical trial. EBioMedicine. 2017;24:56–63;
58. Wei, W., Liu, M., Ning, S. et al. Diagnostic value of plasma HSP90α levels for detection of hepatocellular carcinoma. BMC Cancer 20, 6 (2020).
59. Jiang, Q., Shen, X. Research Progress of Heat Shock Protein 90 and Hepatocellular Carcinoma. International Journal of Clinical Medicine, 2020, 11, 43-52.
60. Zhou J, Yang W, Zhang S, et al. Diagnostic value of angiopoietin-like protein 2 for CHB-related hepatocellular carcinoma. Cancer Manag Res. 2019;11:7159–7169
61. Song X, Wu A, Ding Z, Liang S, Zhang C. Soluble Axl is a novel diagnostic biomarker of hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. Cancer Res Treat. 2020;52:789–797
62. Ma LN, Liu XY, Lu ZH, et al. Assessment of high-sensitivity C-reactive protein tests for the diagnosis of hepatocellular carcinoma in patients with hepatitis B-associated liver cirrhosis. Oncol Lett. 2017;13:3457–3464
63. Sun DW, An L, Huang HY, Sun XD, Lv GY. Establishing peripheral PD-L1 as a prognostic marker in hepatocellular carcinoma patients: how long will it come true? Clin Transl Oncol. 2021;23:82–91
64. Singh G, Yoshida EM, Rathi S, Marquez V, Kim P, Erb SR, Salh BS. Biomarkers for hepatocellular cancer. World J Hepatol. 2020;12:558–573
65. Zhang J, Hao N, Liu W, et al. In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br J Cancer. 2017;117:1676–1684
66. Luo P, Yin P, Hua R, et al. A large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology. 2018;67:662–675
67. Pan HY, Wu QQ, Yin QQ, et al. LC/MS-based global metabolomic identification of serum biomarkers differentiating hepatocellular carcinoma from chronic hepatitis B and liver cirrhosis. ACS Omega. 2021;6:1160–1170
68. El-Abd NE, Fawzy NA, El-Sheikh SM, Soliman ME. Circulating miRNA-122, miRNA-199a, and miRNA-16 as Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. Mol Diagn Ther. 2015 Aug;19(4):213-20.
69. Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer. 2018 Sep 8;9(19):3557-3569.
70. Wang T, Zhang KH. New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma. Front Oncol. 2020;10:1316
71. Zhang J, Zhang D, Zhao Q, Qi J, Li X, Qin C. A distinctively expressed long noncoding RNA, RP11-466I1.1, may serve as a prognostic biomarker in hepatocellular carcinoma. Cancer Med. 2018;7:2960–2968;
72. Pu J, Wang J, Wei H, Lu T, Wu X, Wu Y, Shao Z, Luo C, Lu Y. lncRNA MAGI2-AS3 Prevents the Development of HCC via Recruiting KDM1A and Promoting H3K4me2 Demethylation of the RACGAP1 Promoter. Mol Ther Nucleic Acids. 2019 Dec 6;18:351-362.
73. Banini BA, Sanyal AJ. The use of cell free DNA in the diagnosis of HCC. Hepatoma Res. 2019;5:34.
74. Yan L, Chen Y, Zhou J, Zhao H, Zhang H, et al. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int J Infect Dis 2018;67:92–7
75. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24
76. Horwitz E, Stein I, Andreozzi M, Nemeth J, Shoham A, Pappo O, et al. Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discov. 2014 Jun;4(6):730-43.
77. Sun C, Liao W, Deng Z, et al. The diagnostic value of assays for circulating tumor cells in hepatocellular carcinoma. A meta-analysis. Medicine (Baltimore) 2017;96:0
78. Zayed SA, Zahran NM, Khorshied MM, Abdel-Aziz AO, Mahmoud O, Morsy SA, et al. Genetic variations in death receptor domain 4 gene and the susceptibility to hepatitis C related hepatocellular carcinoma. J Med Virol. 2019 Aug;91(8):1537-1544
79. Wang H, Cao H, Xu Z, Wang D, Zeng Y. SNP rs2596542G>A in MICA is associated with risk of hepatocellular carcinoma: a meta-analysis. Biosci Rep. 2019 May 7;39(5):BSR20181400.
80. Lu H, Ren Z, Li A, et al. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci Rep. 2016;6:33142
81. Chan SL, Mo F, Johnson P, Li L, Tang N, Loong H, et al. Applicability of BALAD score in prognostication of hepatitis B-related hepatocellular carcinoma. J Gastroenterol Hepatol. 2015 Oct;30(10):1529-35.
82. He H, Ji B, Jia Z, Zhang Y, Wang X, Tao X, Liu Y, Jiang J. A Practical Model is Equivalent to the BALAD or BALAD-2 Score in Predicting Long-term Survival after Hepatectomy in Chinese Patients with Hepatocellular Carcinoma. J Cancer 2021; 12(5):1474-1482.
83. Best J, Bechmann LP, Sowa JP, et al. GALAD score detects early hepatocellular carcinoma in an international cohort of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2020;18:728–735
84. Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis. JAMA Netw Open. 2020;3:0
85. Shi JY, Wang X, Ding GY, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut. 2021;70:951–961
86. Tanaka H. Current role of ultrasound in the diagnosis of hepatocellular carcinoma. J Med Ultrason (2001). 2020 Apr;47(2):239-255
87. Kim TK, Lee KH, Khalili K, Jang HJ. Hepatocellular nodules in liver cirrhosis: contrast-enhanced ultrasound. Abdom Imaging. 2011;36:244–263
88. Rossi S, Ghittoni G, Ravetta V, Torello Viera F, Rosa L, Serassi M, et al. Contrast-enhanced ultrasonography and spiral computed tomography in the detection and characterization of portal vein thrombosis complicating hepatocellular carcinoma. Eur Radiol. 2008;18:1749–1756
89. Lee, Y.-T., Wang, J.J., Zhu, Y., Agopian, V.G., Tseng, H.-R. and Yang, J.D. (2021), Diagnostic Criteria and LI-RADS for Hepatocellular Carcinoma. Clinical Liver Disease, 17: 409-413
90. Semaan S, Vietti Violi N, Lewis S, et al. Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid. Eur Radiol. 2020;30:1020–1030
91. An JY, Peña MA, Cunha GM, Booker MT, Taouli B, Yokoo T, Sirlin CB, Fowler KJ. Abbreviated MRI for Hepatocellular Carcinoma Screening and Surveillance; RadioGraphics 2020 40:7, 1916-1931
92. Kovac JD, Ivanovic A, Milovanovic T, Micev M, Alessandrino F, Gore RM. An overview of hepatocellular carcinoma with atypical enhancement pattern: spectrum of magnetic resonance imaging findings with pathologic correlation. Radiol Oncol. 2021;55:130–143
93. Shimizu T, Motosugi U, Komatsu N, Ichikawa S, Inoue T, Onishi H, Enomoto N. MRI-based risk factors of hepatocellular carcinoma in patients with chronic liver disease: a prospective observational study. J Magn Reson Imaging. 2020;51:389–396
94. Iima M, Le Bihan D, Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future; Radiology 2016 278:1, 13-32
95. Peng, J., Zheng, J., Yang, C. et al. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Sci Rep 2020; 10, 7717
96. Mürtz P, Penner AH, Pfeiffer AK, et al. Intravoxel incoherent motion model-based analysis of diffusion-weighted magnetic resonance imaging with 3 b-values for response assessment in locoregional therapy of hepatocellular carcinoma. Onco Targets Ther. 2016;9:6425–6433.
97.. Wu B, Zhang Y, Tan H, Shi H. Value of 18F-FDG PET/CT in the diagnosis of portal vein tumor thrombus in patients with hepatocellular carcinoma Abdom Radiol (NY) 2019;44:2430–2435
98. Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, et al. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer. 2022 Mar 4;17(1):6.
99. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70:1133–1144
100. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018 Jul;69(1):182-236
101. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015;275:97–109
102. Singal A.G. Hoshida Y.Pinato D.J.Marrero J.Nault J.C.Paradis V.et al.International liver cancer association (ILCA) white paper on biomarker development for hepatocellular carcinoma.Gastroenterology. 2021; 160: 2572-2584;
103. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022 Mar;76(3):681-693
104. Cerrito L, Annicchiarico BE, Iezzi R, Gasbarrini A, Pompili M, Ponziani FR. Treatment of hepatocellular carcinoma in patients with portal vein tumor thrombosis: Beyond the known frontiers. World J Gastroenterol. 2019 Aug 21;25(31):4360-4382.
105. Sørensen JB, Klee M, Palshof T, Hansen HH. Performance status assessment in cancer patients. An inter-observer variability study. Br J Cancer. 1993 Apr;67(4):773-5.
106. Llovet JM, Lencioni R. mRECIST for HCC: Performance and novel refinements. J Hepatol. 2020 Feb;72(2):288-306
107. Hatano M, Ojima H, Masugi Y, Tsujikawa H, Hiraoka N, Kanai Y, Shimada K, Shinoda M, Sakamoto M. Steatotic and nonsteatotic scirrhous hepatocellular carcinomas reveal distinct clinicopathological features. Hum Pathol. 2019 Apr;86:222-232.
108. Dodd GD 3rd, Baron RL, Oliver JH 3rd, Federle MP, Baumgartel PB. Enlarged abdominal lymph nodes in end-stage cirrhosis: CT-histopathologic correlation in 507 patients. Radiology. 1997 Apr;203(1):127-30
109. Ferrer-Fàbrega J. Forner A. Liccioni A. Miquel R. Molina V. Navasa M. et al. Prospective validation of ab initio liver transplantation in hepatocellular carcinoma upon detection of risk factors for recurrence after resection. Hepatology. 2016; 63: 839-849
110. Izumi N. Hasegawa K. Nishioka Y. Takayama T. Yamanaka N. Kudo M. et al. A multicenter randomized controlled trial to evaluate the efficacy of surgery vs. radiofrequency ablation for small hepatocellular carcinoma (SURF trial). J Clin Oncol. 2019; 37 (4002–4002)
111. Germani G. Pleguezuelo M. Gurusamy K. Meyer T. Isgro G. Burroughs A.K. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J Hepatol. 2010; 52: 380-388
112. Salem R. Johnson G.E. Kim E. Riaz A. Bishay V. Boucher E. et al. Yttrium-90 radioembolization for the treatment of solitary, unresectable hepatocellular carcinoma: the LEGACY study. Hepatology. 2021;Nov; 74: 2342-2352
113. Shanker M.D. Moodaley P.Soon W. Liu H.Y. Lee Y.Y. Pryor D.I. Stereotactic ablative radiotherapy for hepatocellular carcinoma: a systematic review and meta-analysis of local control, survival and toxicity outcomes. J Med Imaging Radiat Oncol. 2021;
114. Herrero J.I. Sangro B. Pardo F. Quiroga J. Inarrairaegui M. Rotellar F. et al. Liver transplantation in patients with hepatocellular carcinoma across Milan criteria. Liver Transpl. 2008; 14: 272-278
115. Ng K.K.C. Chok K.S.H. Chan A.C.Y. Cheung T.T. Wong T.C.L. Fung J.Y.Y. et al. Randomized clinical trial of hepatic resection versus radiofrequency ablation for early-stage hepatocellular carcinoma. Br J Surg. 2017;Dec; 104: 1775-1784
116. Witowski J. Rubinkiewicz M. Mizera M. Wysocki M. Gajewska N. Sitkowski M. et al. Meta-analysis of short- and long-term outcomes after pure laparoscopic versus open liver surgery in hepatocellular carcinoma patients. Surg Endosc. 2019; 33: 1491
117. Troisi R.I. Berardi G. Morise Z. Cipriani F. Ariizumi S. Sposito C. et al. Laparoscopic and open liver resection for hepatocellular carcinoma with Child–Pugh B cirrhosis: multicentre propensity score-matched study. Br J Surg. 2021; 108: 196-204
118. Shiina S. Tateishi R. Arano T. Uchino K. Enooku K. Nakagawa H. et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol. 2012; 107: 569-577
119. Forner A. Gilabert M. Bruix J. Raoul J.-L. Heterogeneity of intermediate-stage HCC necessitates personalized management including surgery. Nat Rev Clin Oncol. 2014; 12 (10–10)
120. Cucchetti A. Piscaglia F. Cescon M. Colecchia A. Ercolani G. Bolondi L. et al. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma. J Hepatol. 2013; 59: 300-307
121. Han J. Fan Y.C. Wang K. Radiofrequency ablation versus microwave ablation for early stage hepatocellular carcinoma: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2020; 99e22703
122. Vouche M. Lewandowski R.J. Atassi R. Memon K. Gates V.L. Ryu R.K. et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection.
J Hepatol. 2013; 59: 1029
123. Pinato D.J. Sharma R. Allara E. Yen C. Arizumi T. Kubota K. et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J Hepatol. 2017; 66: 338-346
124. Mehta N. Bhangui P. Yao F.Y. Mazzaferro V. Toso C. Akamatsu N. et al. Liver transplantation for hepatocellular carcinoma. Working group report from the ILTS transplant oncology consensus conference. Transplantation. 2020; : 1136-1142
125. Reig M. Darnell A. Forner A. Rimola J. Ayuso C. Bruix J. Systemic therapy for hepatocellular carcinoma: the issue of treatment stage migration and registration of progression using the BCLC-refined RECIST. Semin Liver Dis. 2014; 34: 444-455
126. Bruix J. Chan S.L. Galle P.R. Rimassa L. Sangro B. Systemic treatment of hepatocellular carcinoma. An EASL position paper. J Hepatol. 2021;Oct; 75: 960-974
127. Abou-Alfa G.K. Chan S.L. Kudo M. Lau G. Kelley R.K. Furuse J. et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J Clin Oncol. 2022; 40 (https://ascopubs.org/doi/10.1200/JCO.2022.40.4_suppl.379): 379;
128. Kelley R.K. Yau T. Cheng A.-L. Kaseb A. Qin S. Zhu A.X. et al. VP10-2021: cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line systemic treatment for advanced hepatocellular carcinoma (aHCC): results from the randomized phase III COSMIC-312 trial. Ann Oncol. 2021; (0)https://doi.org/10.1016/J.ANNONC.2021.10.008
129. Reig M. Rimola J. Torres F. Darnell A. Lope C.R.- Forner A. et al. Post-progression survival of patients with advanced hepatocellular carcinoma. Rationale for second line trial design. Hepatology. 2013; 58: 2023-2031
130. Nault JC, Sutter O, Nahon P, Ganne-Carrié N, Séror O. J. Percutaneous treatment of hepatocellular carcinoma: state of the art and innovations. Hepatol. 2018;68:783–797
131. Glassberg MB, Ghosh S, Clymer JW, et al. Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular carcinoma and liver metastases: a systematic review and meta-analysis. Onco Targets Ther. 2019;12:6407–6438
132. Kim R, Kang TW, Cha DI, et al. Percutaneous cryoablation for perivascular hepatocellular carcinoma: therapeutic efficacy and vascular complications. Eur Radiol. 2019;29:654–662
133. Sutter O, Calvo J, N'Kontchou G, et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series. Radiology. 2017;284:877–886
134. Djokic M, Cemazar M, Popovic P, et al. Electrochemotherapy as treatment option for hepatocellular carcinoma, a prospective pilot study. Eur J Surg Oncol. 2018;44:651–657
135. Chai NX, Chapiro J. Therapy of Intermediate-stage hepatocellular carcinoma: current evidence and clinical practice. Semin Intervent Radiol. 2020;37:456–465
136. Peck-Radosavljevic M, Kudo M, Raoul J-C, et al. Outcomes of patients with hepatocellular carcinoma treated with transarterial chemoembolization (TACE): global OPTIMIS final analysis. J Clin Oncol. 2018;36:4018–4010.
137. Wang Q, Xia D, Bai W, et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: a multicentre observational study.J Hepatol. 2019;70:893–903
138. Chow PK, Gandhi M, Tan SB, et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36:1913–1921
139. Lee J, Shin IS, Yoon WS, Koom WS, Rim CH. Comparisons between radiofrequency ablation and stereotactic body radiotherapy for liver malignancies: meta-analyses and a systematic review. Radiother Oncol. 2020;145:63–70
140. Shen PC, Chang WC, Lo CH, et al. Comparison of stereotactic body radiation therapy and transarterial chemoembolization for unresectable medium-sized hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2019;105:307–318
141. Sekino Y, Okumura T, Fukumitsu N, et al. Proton beam therapy for hepatocellular carcinoma associated with inferior vena cava tumor thrombus. J Cancer Res Clin Oncol. 2020;146:711–720
142. Yang DJ, Luo KL, Liu H, et al. Meta-analysis of transcatheter arterial chemoembolization plus radiofrequency ablation versus transcatheter arterial chemoembolization alone for hepatocellular carcinoma. Oncotarget. 2017;8:2960–2970
143. Sonbol MB, Riaz IB, Naqvi SA, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: a systematic review and network meta-analysis. JAMA Oncol. 2020;6:0
144. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018 Mar 24;391(10126):1163-1173
145. Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research progresses of targeted therapy and immunotherapy for hepatocellular carcinoma. Curr Med Chem. 2021;28:3107–3146
146. Kudo M. A paradigm change in the treatment strategy for hepatocellular carcinoma. Liver Cancer. 2020;9:367–377
147. Kudo M. Matilla A. Santoro A. Melero I. Gracian A.C. Acosta-Rivera M. et al. Checkmate-040: nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol. 2019; 37 (327–327)
148. Wörns M.A. Weinmann A. Pfingst K. Schulte-Sasse C. Messow C.-M. Schulze-Bergkamen H. et al. Safety and efficacy of sorafenib in patients with advanced hepatocellular carcinoma in consideration of concomitant stage of liver cirrhosis. J Clin Gastroenterol. 2009; 43: 489-495
149. Reig M. Torres F. Rodriguez-Lope C. Forner A. LLarch N. Rimola J. et al. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J Hepatol. 2014; 61: 318-324.
150. Sung M.W. Finn R.S. Qin S. Han K.-H. Ikeda K. Cheng A.-L. et al. Association between overall survival and adverse events with lenvatinib treatment in patients with hepatocellular carcinoma (REFLECT). J Clin Oncol. 2019; 37: 317
151. Bruix J. Merle P. Granito A. Huang Y.-H. Bodoky G. Yokosuka O. et al. Hand-foot skin reaction (HFSR) and overall survival (OS) in the phase 3 RESORCE trial of regorafenib for treatment of hepatocellular carcinoma (HCC) progressing on sorafenib. J Clin Oncol. 2018; 36: 412
152. Abou-Alfa G.K. Meyer T. Cheng A.-L. Cicin I. Bolondi L. Klümpen H.J. et al. Association of adverse events (AEs) with efficacy outcomes for cabozantinib (C) in patients (pts) with advanced hepatocellular carcinoma (aHCC) in the phase III CELESTIAL trial. J Clin Oncol. 2019; 37: 4088
153. Mancuso A. Mazzola A. Cabibbo G. Perricone G. Enea M. Galvano A. et al. Survival of patients treated with sorafenib for hepatocellular carcinoma recurrence after liver transplantation: a systematic review and meta-analysis. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2015; 47: 324-330
154. Munker S. De Toni E.N. Use of checkpoint inhibitors in liver transplant recipients. United Eur Gastroenterol J. 2018; 6: 970-973
155. Berretta M. Di Benedetto F. Dal Maso L. Cacopardo B. Nasti G. Facchini G. et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma in HIV-positive patients. Anticancer Drugs. 2013; 24: 212-218
156. Díaz-González Á. Sanduzzi-Zamparelli M. Fonseca L.G. Di Costanzo G.G. Alves R. Iavarone M. et al. International and multicenter real-world study of sorafenib-treated patients with hepatocellular carcinoma under dialysis. Liver Int. 2020; 40: 1467-1476
157. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502
158. Fountzilas C, Gupta M, Lee S, Krishnamurthi S, Estfan B, Wang K, et al. A multicentre phase 1b/2 study of tivozanib in patients with advanced inoperable hepatocellular carcinoma. Br J Cancer. 2020;122(7):963–70
159. Feng Bi SQ, Shanzhi G, Bai Y, Chen Z, Wang Z, Ying J, et al. Donafenib versus sorafenib as first-line therapy in advanced hepatocellular carcinoma: An open-label, randomized, multicenter phase II/III trial. J Clin Oncol. 2020;38(suppl):abstr 4506
160. Qin S, Li Q, Gu S, Chen X, Lin L, Wang Z, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol. 2021
161. Decaens T, Barone C, Assenat E, Wermke M, Fasolo A, Merle P, et al. Phase 1b/2 trial of tepotinib in sorafenibpretreated advanced hepatocellular carcinoma with MET overexpression. Br J Cancer. 2021
162. Zhang, H., Zhang, W., Jiang, L. et al. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res 10, 3 (2022)
163. Kelley RK, Gane E, Assenat E, Siebler J, Galle PR, Merle P, et al. A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type I Inhibitor) and Sorafenib in Patients With Advanced Hepatocellular Carcinoma. Clin Transl Gastroenterol. 2019;10(7):e00056
164. Henry-Berger J, Mouzat K, Baron S, Bernabeu C, Marceau G, Saru JP, et al. Endoglin (CD105) expression is regulated by the liver X receptor alpha (NR1H3) in human trophoblast cell line JAR. Biol Reprod. 2008;78(6):968–75
165. Duffy AG, Ulahannan SV, Cao L, Rahma OE, Makarova-Rusher OV, Kleiner DE, et al. A phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib. United European Gastroenterol J. 2015;3(5):453–61
166. Duffy AG, Ma C, Ulahannan SV, Rahma OE, Makarova-Rusher O, Cao L, et al. Phase I and Preliminary Phase II Study of TRC105 in Combination with Sorafenib in Hepatocellular Carcinoma. Clin Cancer Res. 2017;23(16):4633–41
167. Lu X, Chen H, Patterson AV, Smaill JB, Ding K. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy: Advances and Prospects. J Med Chem. 2019;62(6):2905–15
168. Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, et al. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov. 2019;9(12):1696–707
169. Ao JY, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol Cancer Ther. 2017;16(8):1544–54.
170. Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010;16(13):3420–30
171. van Beek AA, Zhou G, Doukas M, Boor PPC, Noordam L, Mancham S, et al. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int J Cancer. 2019;145(4):1111–24.
172. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J Natl Cancer Inst. 2019;111(6):538–49
173. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5
174. Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin Cancer Res. 2020;26(15):3979–89.
175. Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol. 2020;17(7):418–34
176. Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7(8):e1450710
177. Palmer DH, Malagari K, Kulik LM. Role of locoregional therapies in the wake of systemic therapy. J Hepatol. 2020;72:277–287
178. Pinna AD, Yang T, Mazzaferro V, et al. Liver transplantation and hepatic resection can achieve cure for hepatocellular carcinoma. Ann Surg. 2018;268:868–875
179. Chan A, Zhang WY, Chok K, et al. ALPPS versus portal vein embolization for hepatitis-related hepatocellular carcinoma. A changing paradigm in modulation of future liver remnant before major hepatectomy. Ann Surg. 2021;273:957–965
180. Peng W, Li JW, Zhang XY, Li C, Wen TF, Yan LN, Yang JY. A novel model for predicting posthepatectomy liver failure in patients with hepatocellular carcinoma. PLoS One. 2019;14:0
181. Mise Y, Hasegawa K, Satou S, et al. How has virtual hepatectomy changed the practice of liver surgery? Experience of 1194 virtual hepatectomy before liver resection and living donor liver transplantation. Ann Surg. 2018;268:127–133

Abonează-te la Viața Medicală!

Dacă vrei să fii la curent cu tot ce se întâmplă în lumea medicală, abonează-te la „Viața Medicală”, publicația profesională, socială și culturală a profesioniștilor în Sănătate din România!

  • Tipărit + digital – 249 de lei
  • Digital – 169 lei

Titularii abonamentelor pe 12 luni sunt creditați astfel de:

  • Colegiul Medicilor Stomatologi din România – 5 ore de EMC
  • Colegiul Farmaciștilor din România – 10 ore de EFC
  • OBBCSSR – 7 ore de formare profesională continuă
  • OAMGMAMR – 5 ore de EMC

Află mai multe informații despre oferta de abonare.

Cookie-urile ne ajută să vă îmbunătățim experiența pe site-ul nostru. Prin continuarea navigării pe site-ul www.viata-medicala.ro, veți accepta implicit folosirea de cookie-uri pe parcursul vizitei dumneavoastră.

Da, sunt de acord Aflați mai multe